skip to main content


Search for: All records

Creators/Authors contains: "Miller, David A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Pollinators are an essential component of terrestrial food webs and agricultural systems but are threatened by insufficient access to floral resources. Managed honey bees, as generalist foragers that hoard nectar as honey, can act as bioindicators of floral resources available to pollinators in a given landscape through their accumulation of honey. Honey yields across the United States have decreased appreciably since the 1990s, concurrent with shifts in climate, land-use, and large-scale pesticide application. While many factors can affect honey accumulation, this suggests that anthropogenic stressors may be having large-scale impacts on the floral resources that pollinators depend on for their nutrition. We used hierarchical partitioning on five decades of state-level data to parse the most important environmental factors and likely mechanisms associated with spatial and temporal variation in honey yields across the US. Climatic conditions and soil productivity were among the most important variables for estimating honey yields, with states in warm or cool regions with productive soils having the highest honey yields per colony. These findings suggest that foundational factors constrain pollinator habitat suitability and define ecoregions of low or high honey production. The most important temporally varying factors were change in herbicide use, land use (i.e. increase in intensive agriculture and reduction in land conservation programs that support pollinators) and annual weather anomalies. This study provides insights into the interplay between broad abiotic conditions and fine temporal variation on habitat suitability for honey bees and other pollinators. Our results also provide a baseline for investigating how these factors influence floral resource availability, which is essential to developing strategies for resilient plant–pollinator communities in the face of global change.

     
    more » « less
  2. Changes in phenology in response to ongoing climate change have been observed in numerous taxa around the world. Differing rates of phenological shifts across trophic levels have led to concerns that ecological interactions may become increasingly decoupled in time, with potential negative consequences for populations. Despite widespread evidence of phenological change and a broad body of supporting theory, large-scale multitaxa evidence for demographic consequences of phenological asynchrony remains elusive. Using data from a continental-scale bird-banding program, we assess the impact of phenological dynamics on avian breeding productivity in 41 species of migratory and resident North American birds breeding in and around forested areas. We find strong evidence for a phenological optimum where breeding productivity decreases in years with both particularly early or late phenology and when breeding occurs early or late relative to local vegetation phenology. Moreover, we demonstrate that landbird breeding phenology did not keep pace with shifts in the timing of vegetation green-up over a recent 18-y period, even though avian breeding phenology has tracked green-up with greater sensitivity than arrival for migratory species. Species whose breeding phenology more closely tracked green-up tend to migrate shorter distances (or are resident over the entire year) and breed earlier in the season. These results showcase the broadest-scale evidence yet of the demographic impacts of phenological change. Future climate change–associated phenological shifts will likely result in a decrease in breeding productivity for most species, given that bird breeding phenology is failing to keep pace with climate change. 
    more » « less
    Free, publicly-accessible full text available July 11, 2024
  3. Biologists routinely fit novel and complex statistical models to push the limits of our understanding. Examples include, but are not limited to, flexible Bayesian approaches (e.g. BUGS, stan), frequentist and likelihood‐based approaches (e.g. packageslme4) and machine learning methods.

    These software and programs afford the user greater control and flexibility in tailoring complex hierarchical models. However, this level of control and flexibility places a higher degree of responsibility on the user to evaluate the robustness of their statistical inference. To determine how often biologists are running model diagnostics on hierarchical models, we reviewed 50 recently published papers in 2021 in the journalNature Ecology & Evolution, and we found that the majority of published papers didnotreport any validation of their hierarchical models, making it difficult for the reader to assess the robustness of their inference. This lack of reporting likely stems from a lack of standardized guidance for best practices and standard methods.

    Here, we provide a guide to understanding and validating complex models using data simulations. To determine how often biologists use data simulation techniques, we also reviewed 50 recently published papers in 2021 in the journalMethods Ecology & Evolution. We found that 78% of the papers that proposed a new estimation technique, package or model used simulations or generated data in some capacity (18 of 23 papers); but very few of those papers (5 of 23 papers) included either a demonstration that the code could recover realistic estimates for a dataset with known parameters or a demonstration of the statistical properties of the approach. To distil the variety of simulations techniques and their uses, we provide a taxonomy of simulation studies based on the intended inference. We also encourage authors to include a basic validation study whenever novel statistical models are used, which in general, is easy to implement.

    Simulating data helps a researcher gain a deeper understanding of the models and their assumptions and establish the reliability of their estimation approaches. Wider adoption of data simulations by biologists can improve statistical inference, reliability and open science practices.

     
    more » « less
  4. null (Ed.)
  5. Abstract

    Global tropical forests have been modified and fragmented by commodity agroforests, leading to significant alterations in ecological communities. Nevertheless, these production landscapes offer secondary habitats that support and sustain local biodiversity. In this study, we assess community level and species‐specific responses of amphibians to land management in areca, coffee and rubber, three of the largest commodity agroforests in the Western Ghats.

    A total of 106 agroforests across a 30,000‐km2landscape were surveyed for amphibians using a combination of visual and auditory encounter surveys. We used a Bayesian multi‐species occupancy modelling framework to examine patterns of species richness, beta diversity, dominance structure and individual species occupancies. The influence of biogeographic variables such as elevation and latitude as well as microhabitat availability of streams, ponds and unpaved plantation roads was tested on amphibian species occupancy.

    Coffee agroforests had the highest species richness and lowest dominance when compared to areca and rubber. Beta diversity was highest in areca for within agroforest measures. Compared across agroforests, coffee had highest beta diversity with areca and rubber. Both elevation and latitude showed an overall positive association with amphibian occupancy, although species‐specific responses varied considerably.

    Microhabitat availability was one of the strongest predictors of amphibian occupancy, with mean community response being positive with presence of water bodies and roads. Pond presence increased species richness per site by 34.7% (species‐specific responses in occupancy ranged from –2.7% to 327%). Stream presence alone did not change species richness but species‐specific response ranged from –59% to 273%. Presence of plantation roads also increased species richness by 21.5% (species‐specific response ranged from –82% to 656%). Being unpaved with little vehicular traffic, plantation roads seem to provide additional habitats for amphibians. Presence of all three microhabitats at a site increased species richness by 75%.

    Our study highlights the importance of land management strategies that maintain diverse native canopy and freshwater bodies and other microhabitats in sustaining amphibian fauna. Market‐driven land‐use change from coffee to other agroforest types will have detrimental effects on amphibian communities and their long‐term sustainability in the Western Ghats.

     
    more » « less
  6. Sex-related differences in mortality are widespread in the animal kingdom. Although studies have shown that sex determination systems might drive lifespan evolution, sex chromosome influence on aging rates have not been investigated so far, likely due to an apparent lack of demographic data from clades including both XY (with heterogametic males) and ZW (heterogametic females) systems. Taking advantage of a unique collection of capture–recapture datasets in amphibians, a vertebrate group where XY and ZW systems have repeatedly evolved over the past 200 million years, we examined whether sex heterogamy can predict sex differences in aging rates and lifespans. We showed that the strength and direction of sex differences in aging rates (and not lifespan) differ between XY and ZW systems. Sex-specific variation in aging rates was moderate within each system, but aging rates tended to be consistently higher in the heterogametic sex. This led to small but detectable effects of sex chromosome system on sex differences in aging rates in our models. Although preliminary, our results suggest that exposed recessive deleterious mutations on the X/Z chromosome (the “unguarded X/Z effect”) or repeat-rich Y/W chromosome (the “toxic Y/W effect”) could accelerate aging in the heterogametic sex in some vertebrate clades. 
    more » « less
  7. Abstract

    The field of comparative ageing biology has greatly expanded in the past 20 years. Longitudinal studies of populations of reptiles with a range of maximum lifespans have accumulated and been analysed for evidence of mortality senescence and reproductive decline. While not as well represented in studies of amniote senescence, reptiles have been the subjects of many recent demographic and mechanistic studies of the biology of ageing.

    We review recent literature on reptile demographic senescence, mechanisms of senescence, and identify unanswered questions. Given the ecophysiological and demographic diversity of reptiles, what is the expected range of reptile senescence rates? Are known mechanisms of ageing in reptiles consistent with canonical hallmarks of ageing in model systems? What are the knowledge gaps in our understanding of reptile ageing?

    We find ample evidence of increasing mortality with advancing age in many reptiles. Testudines stand out as slower ageing than other orders, but data on crocodilians and tuatara are sparse. Sex‐specific analyses are generally not available. Studies of female reproduction suggest that reptiles are less likely to have reproductive decline with advancing age than mammals.

    Reptiles share many physiological and molecular pathways of ageing with mammals, birds and laboratory model organisms. Adaptations related to stress physiology coupled with reptilian ectothermy suggest novel comparisons and contrasts that can be made with canonical ageing phenotypes in mammals. These include stem cell and regeneration biology, homeostatic mechanisms, IIS/TOR signalling, and DNA repair.

    To overcome challenges to the study of reptile ageing, we recommend extending and expanding long‐term monitoring of reptile populations, developing reptile cell lines to aid cellular biology, conducting more comparative studies of reptile morphology and physiology sampled along relevant life‐history axes and sequencing more reptile genomes for comparative genomics. Given the diversity of reptile life histories and adaptations, achieving these directives will likely greatly benefit all ageing biology.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less